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MOTIVATION

Music generation is a well known field in the realm of
machine learning. Despite this, until recently there have not
been many notable advancements in the field relative to other
areas in AI in the past few years. For this project, we wanted to
find if we could apply the principles of fine tuning a language
model on a new language for the task of music generation.
Music has many similarities to language. It can be described
in text though sheet music, while also being creative like how
humans speak and write. This project focuses on fine-tuning
Llama 3 [1], a large language model on sheet music, for the
model to continue any given song.

Music continuation has several use cases for different
groups. We see three key audiences that our model can be
used in. Firstly, songwriters that are stuck midway through
a song and don’t know how to continue can use the model
for inspiration and build off the model to create their musi-
cal piece. Listeners that enjoyed a short clip of music can
arbitrarily extend the song with minimal knowledge of music
theory while keeping the consistency of the original piece.
Finally, fans of songs that want a remix can use our model to
transform the song to create an alternative version.

DATA

Our model was trained on our own custom dataset for
this task. As our task specifically is to generate sheet music,
we needed to look for formats that are popular enough to
be used outside of the research setting and data sources of
those formats. To do this, MusicXML [2] was chosen as a
base format for our dataset. This is the standard way sheet
music is represented for professionals in the music industry.
While MIDI [3] is a much more popular format in the wider
population, it defines how the music should be played at a byte
level, and was not deemed suitable for this task. MusicXML
has a very straightforward XML structure, primarily dealing
with a series of measure elements each defining notes or other
elements to display on the page. Our unedited MusicXML
dataset contains approximately eleven thousand songs from
public databases of Wikifonia [4] and MScoreLib [5]. These
databases largely consist of classical music without copyright
concerns.

A large hurdle in our project was how to best prepare the
data for the model. Many MusicXML components don’t have
any effect on the sound of the note, and deep research into the

standard was necessary to understand what could be removed
without impacting the meaning of the music. XML is also
very expensive for tokenization in comparison to other formats
[6], [7]. To make this project possible, we needed to alter the
MusicXML format to fit within the context length of Llama
3.

A few large edits were made to the original data sources.
First, all of the elements in the tree that did not have any
meaning to how the song was played were removed. Mu-
sicXML has several unnecessary features for our use case.
For example, it allows for notes to have custom placement on
the line regardless of their actual value, corrections to the song
have a special notation to state it is not part of the original
song, notes can have custom colors, stem directions, and much
more that can all be removed. Then, we removed all lyrics
from the dataset and songs that changed their “attributes” tag
midway through the song, as this was not in the scope of this
project. All files were standardized to use the “score-partwise”
version of the MusicXML format. Lastly, the format of the
file was changed from XML to YAML as the format uses less
tokens in the Llama 3 tokenizer. After these changes were
made, we then needed to split the data into instruction, input
and output. The instruction would be the single “attributes”
tag in the song, input would be the first half of the song, and
the output would be the second half. If the song was longer
than 3,500 tokens, the song was split into multiple elements
in the dataset to be below this limit.

In Fig 1 you can see an example measure in MusicXML,
and a measure in the YAML version we used for the model
where we removed all unnecessary data. In MusicXML, each
note may be over 100 tokens, while in YAML it is reduced
down to about 30. By condensing the data, we can fit more
notes into the context length. This allows us to input more
notes into the model, increasing useability.

STATE OF THE ART MODELS

Much research has been done in the domain of music gen-
eration. Additionally, there are many different sub-domains.
While recent research has been developing custom solutions
for this problem, most of the open source projects are hard to
use, as they are technical demos for a research audience. Little
is known about how fine tuning a general language model can
be used as a form of music generation, specifically continuing
an existing song.



(a) Original MusicXML (b) Our YAML Version

Fig. 1: Music Data Formats

MuseFormer was released by Microsoft in 2022 that applies
the transformer architecture to music [8]. In their work, each
concept like tempo, beat, pitch and duration are each a separate
token. The attention mechanism has two stages the fine grained
attention only attends to the elements in the same bar, while
the coarse grained attention only attends to the summary of
other bars. This allows it to be aware of the entire song without
saving all of it in the context length.

We used Llama 3 which we fine tuned for our music
generation task. We chose this as it is the state of the art in the
field of large language models. The tokenization of the model
was not touched. The model has three values, instruction, input
and output. We set the instruction to the simplified version of
the “attributes” tag. This contains data like the tempo, and
key that is kept throughout the entire length of the song. The
tokens in the instruction input are kept as important for the
attention mechanism. Then, the existing portion of the song is
put into the input, and the model then generates future tokens
in the output.

To fine tune our Llama 3 model we used Unsloth [9], a state
of the art open source tool for fine tuning LLMs. The Llama 3
family of models created by Meta has an 8 billion parameter
version can be run on most consumer hardware, so apps made
with the model can be used by anyone locally. Additionally,
Llama 3 has a large ecosystem with a context length of 8
thousand tokens which is long enough for a large portion of
a song.

RESEARCH

For our solution, we looked into 2 topics to utilize in our
solution which are briefly explained in this section.

A. Quantization

Quantization converts the weights and activations into
smaller data types, reducing the size and complexity of the
model [10]. Most models are trained in 16 bit floating point
numbers, and while that is useful when in initial training,
it is unnecessary for fine tuning and inference. We reduced



the model to four bit quantization so that it would fit on our
computer’s GPU so we could train locally.

B. LoRA

Low-Rank Adaptation of Large Language Models (LoRA)
[11] is an efficient way to fine tune a pretrained model. It
achieves this by adding small, adjustable components to each
layer of the model, leaving the original model unchanged.
Instead of using a single delta matrix, LoRA employs two
matrices to reduce the dimensionality. Because there are less
calculations and memory needed, the fine-tuning process is
much faster. Additionally, this method also typically produces
higher quality results than normal fine-tuning. This allows us
to train our model for anything with as little as 1k samples.

ARCHITECTURE

Our LLama 3 model has 32 layers with the same amount
of attention heads. When training the model, each step was
composed of 8 samples in our data.

For LoRA [12], the attention dimension of the low-rank
matrices was 8. This decomposes a large matrix into 2 smaller
matrices in the attention layers. We tested the model with
higher ranks but no significant benefits were seen. The alpha
parameter for LoRA scaling was set to 16. This changes how
the low-rank matrices are introduced into the model during the
LoRA adaptation process. If the alpha parameter is set higher
it means the LoRA layer acts stronger on the base model.
Additionally, we targeted all linear layers for the fine-tuning
process [13].

TRAINING

Ultimately we trained the model with 1.6K samples. We
selected this because originally we trained a model with 10K
samples and noticed the model was not improving after 1k
samples. For our model, we used Adaptive Moment Estimation
with Decoupled Weight Decay (AdamW) with 8 bit precision.

While experimenting with the learning rate scheduler, our
model worked better with cosine when considering time and
hardware resources. Fig 2 shows the significant difference be-
tween cosine, linear, and polynomial learning rate schedulers.
Cosine performed equally as good as the other schedulers
however it was able to complete 18% - 35% more samples
per second. Additionally, we determined the optimal learning
rate and weight decay is 2e-4 and .01 respectively.

Our training batch size per device was set to 1 for memory
efficiency. As you can see in Fig 3, using a higher batch
size, going from 1 to 2 doubled the training time with no
significant changes in the models performance. Increasing the
gradient accumulation steps resulted in smoother loss, but it
also extended our training time by around 50% with each
increment. Due to memory efficiency and hardware utilization
reasons, we determined setting gradient accumulation steps to
3 was optimal for training because with our data the model
reached the same loss quicker.

Lastly, due to the nature of our model’s task and because
we have a large amount of good data while using LoRA to

Fig. 2: Schedulers comparison.
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Fig. 3: (a) System Utilization (b) Train Loss

fine tune a LLM, having an epoch of 1 was enough for our
models purpose.

EVALUATION

We struggled thinking of an evaluation process for our
model’s generated music. This is a difficult problem to address
because it’s not clear what the merits of a good solution
would look like. For example, initially we noticed our model
tended to repeat music. However, music is repetitive by nature.
Therefore, it’s not clear if our model was working well
or overfitting. We considered the output should be different
than the input but sound good still. Furthermore, there is no
metric that we can use to evaluate music especially for our
models use case. Other research uses human preference for
evaluation rather than numerical metrics [14].Ultimately, we
decided to go the same route and use human preference for
our evaluation.



OPTIMIZATION

After fine tuning a model, it still must be converted to a
format that is optimal for inference. Once fully fine tuned,
it will be in a .safetensor format. This format can be used
for further development by researchers, so we uploaded the
model to HuggingFace, but the model needed further work
to be used for inference locally. The optimized format for
LLMs is GGUF [15], which is a standard .bin file that is
optimized for quick loading and saving, and is standard for
locally hosted inference applications. To convert to GGUF, we
used llama.cpp, a standard tool for preforming optimizations
in LLMs [16]. We continued to use the 4 bit quantization
we used in training, as it lowers RAM use for users and has
a faster inference time. We could then share the model on
Ollama, which could then be ran on almost any computer at
a speed at or faster than what is commonly acceptable for the
field depending on the computer’s specifications.

APPLICATION

To show off the results of the model, we created a simple
web application. For this, we used Flask for the backend
and React for the front end. The front end allows for users
to upload a MusicXML file they want to extend, or the
attribute and measure YAML files separately. When the “Run
Inference“ button is clicked, it will send the attribute and
measure files to the backend for Chord Llama to be run using
Ollama. The results are then streamed back to the output
text block. The final application can be found on Github:
https://github.com/Chord-Llama/Chord-Llama

COMPARISON RESULTS

We fully trained 2 models to compare performance. One
model was the full Llama 3 model and the other was a smaller
22 hidden layer version called TinyLLama. The purpose of this
comparison was to view how a lighter model would perform
with our intended task. TinyLlama was a lot more efficient at
training. However, LLama 3 generated better results overall
and used it for our Chord Llama project. A detailed compari-
son can be accessed at: https://api.wandb.ai/links/martin-chivo/
24rsptsc

We tested Chord Llama on excerpts of MusicXML to
manually determine the quality of music that the model could
generate. The overtrained model would simply repeat the input
with little to no modifications. Training on a limited number
of samples led to better variety of music generation.

The output of Chord Llama can be reverted back into
MusicXML by undoing the steps in data cleaning. We can then
view the sheet music in a MusicXML reader like MuseScore
4. See Appendix A for the output in sheet music form.

The final project of Chord Llama has a file upload for a
MusicXML file, or you can upload the attributes and measures
separately. You can then press “Run Inference” to send the
inputs to the backend. This will send the data to Ollama
running Chord Llama, generating the output that is then sent
back to the user. The model’s response can then be converted
back into a MusicXML file through the code block in the data

cleaning notebook. See Appendix B for the exmample user
interface.

TASK DISTRIBUTION

Martin

Model selection and Fine tuning: Worked on fine tuning
several different versions of our Llama 3 model on a subset
of our data and comparing and evaluating the performance
differences. Then after identifying what is optimal, fully
trained 2 models the full Lllama 3 model and a smaller 22
hidden layer version called TinyLLama for comparing.

This was all completed in a jupyter notebook within
the file named “Selection Training.ipynb”. This file
can be accessed at: https://huggingface.co/Chord-Llama/
Llama-3-chord-llama-fullModel/blob/main/Selection
Training.ipynb. This work was connected to wandb for
tracking and documenting each model’s performance.
Notably, the notebook is broken down into different sections
or subsections, where each section is a configuration
or version of the model that was used for training and
comparing performances. The notebook was set up this way
to make things modular and quickly run all cells within a
specific section which helped with each iteration. All of
this is followed by a section called “Full Model Training”
with the optimal configuration used to train the full model.
Then there is a section for saving the model locally and
pushing it to Huggingface. Lastly, it is not part of the
submission requirements but there are two final sections used
for inferencing where we load a model or checkpoint and
perform a test to see how the model is working. One of the
sections uses cuda and the other section is to experiment with
Hugginface’s pipeline transformer to see a different method
to set up the model to generate music text.

William

Data: Defined the data to be used for the model. Found the
data, cleaned the data to remove all unnecessary components,
and prepared it for fine-tuning.

Data Cleaning was done in a Python notebook in the
”music xml converter.ipynb” file available on HuggingFace
at: https://huggingface.co/datasets/Chord-Llama/chord llama
dataset/blob/main/music xml converter.ipynb. This code im-
plements the process in the data section. In this step, we go
from downloading the data, cleaning it, converting it to YAML,
and converting the data into JSON Lines format so it can be
uploaded to HuggingFace as a dataset to be used for fine-
tuning.

Optimization and Application: Once the model was pub-
lished to HuggingFace, it needed to be optimized for inference,
and an application needed to be made to use it.

Optimization was done by converting from a .safetensor file
to GGUF using llama.cpp. Once done, it was transformed into
an Ollama model to be used by applications. A simple web
application was then made using Flask and React. The app has
two main functionallities. First, it allows a user to convert a
MusicXML file into the YAML format identical to the format
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used to train the model. Then, using that output, it can then
send the data for inference to Chord Llama to predict new
sheet music. The final project can be found on GitHub at:
https://github.com/Chord-Llama/Chord-Llama

TABLE I: Task Distribution

Tasks Description William Martin
Presentation Project Presentation X X
Document Project Document X X
Research All Research X X

Code

Data X
Model Selection X
Training/Fine Tuning X
Optimization X
Application X
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APPENDIX A
SONG VISUALIZATION

Fig. 4: Sheet music representation of the prompt plus output. Everything after the blue line is generated by model.

APPENDIX B
USER INTERFACE
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