
Optimizing AI Scheduling on GPUs with Ansor,
Transfer Tuning, and Droplet Search

1st William Parker
Charles W. Davidson College of Engineering

San José State University
San Jose, CA, USA

william.j.parker@sjsu.edu

2nd Volodymyr Makarenko
Charles W. Davidson College of Engineering

San José State University
San Jose, CA, USA

volodymyr.makarenko@sjsu.edu

3rd Tarun Sanjeev Banala
Charles W. Davidson College of Engineering

San José State University
San Jose, CA, USA

tarunsanjeev.banala@sjsu.edu

Abstract—To interact with a GPU to run tasks such as AI
models, the task need to be scheduled and coordinated with
the rest of the device through the task scheduler. Libraries
have been made that have hand tuned the kernel to run these
models, but this tuning only exists for the set of GPUs the library
supports and may not optimize novel operations. To solve this,
work has been done to automatically search for optimizations for
the kernel for any hardware and model combination. This work
proposes combining two existing techniques, Droplet Search, and
Transfer Tuning, on top of the Ansor task scheduler generator,
to improve the speed at which the search finds optimizations.
We find that combining these techniques can lead to improve-
ments compared to when Transfer Tuning is used by itself
with Ansor by up to 10%. The source code is available at
https://github.com/Jaspann/transfer-tuning.

Index Terms—Task Schedulers, Artificial Intelligence, Deep
Learning, GPUs.

I. INTRODUCTION

Individuals, academics, and industry all run different AI
models on their devices. AI has become a part of many
digital systems, and very in capabilities, such as natural
language processing, image generation, object detection, fa-
cial recognition, and much more. Each model has different
requirements to which it must devote resources, and each
hardware component that the model may run on has different
specifications. Optimizations that work on one GPU may not
work on another, and due to the large verity of GPU models
and options in building deep learning models, this creates a
near impossible task to optimize every combination. This is
especially noticeable for consumer-grade technology, where
there is a large verity in hardware while end-user applications
are quickly pushing small AI models to run locally rather than
dealing with hosting the model centrally.

Traditional solutions like cuDNN [1] propose libraries that
optimize the most important parts of the AI models on the most
popular GPUs. This paradigm does not work for everyone
though, especially considering the rapid pace of AI devel-
opment and deployment paired with growing historical base

and new options for compute. Developers using these models
suffer as well, as they need to sacrifice options that in theory
are a better fit for the system, but due to a lack of support
cannot be implemented unless there is significant development
put into these problems that are completely separate from the
development of the system.

In response, techniques such as Ansor [2] from the TVM
(Tensor Virtual Machine) [3] project have been developed to
programmatically search for optimization techniques to apply
to optimize the model with the task scheduler. Our research
lies in testing combining optimization techniques in Ansor
to measure how they compare apart versus when combined
together.

II. BACKGROUND

In this section we will discuss the systems used to preform
task scheduler optimization for deep learning models.

A. cuDNN

cuDNN [1] is NVIDIA’s proprietary CUDA library for deep
neural networks. It provides highly optimized implementations
of common deep learning operations (such as convolutions,
pooling, and activation functions) through pre-written kernels
specifically tuned for NVIDIA GPUs. While cuDNN works
with the CUDA runtime system for scheduling optimizations
such as asynchronous kernel execution and computation/-
data transfer overlap, the actual task scheduling is primarily
handled by CUDA itself. Being vendor-specific and closed-
source, cuDNN’s optimizations are limited to NVIDIA GPUs
and specific hardware configurations. This creates limitations
in two ways: first, the optimizations are only available for
supported NVIDIA hardware, and second, the optimization
strategies are pre-determined rather than adaptable to new
scenarios. TVM’s authors argue this approach is insufficient
for the diverse range of modern deployment scenarios, where
AI models need to run efficiently on a variety of hardware
platforms beyond just NVIDIA GPUs.



B. Tensor Program Optimization

Halide language, developed in 2013, was one of the first
solutions to optimizing stream and stencil programs [4]. The
authors were among the first to consider the problem of opti-
mizing image processing pipelines and to show an algorithm
capable of finding better solutions compared to manual code
optimizations.

The general problem of optimizing ML program structure
is known as Tensor Program Optimization. Chen et al. have
introduced TVM, an extension of Halide to the machine
learning setting [3]. TVM is a static tensor program compiler.

TVM enables high-level tensor program optimization by
implementing multiple optimizations for a variety of hardware
configurations while supporting popular ML frameworks, by-
passing the limitations of cuDNN. Higher-level optimization
allows handling GPUs with different operation primitives,
or different types of accelerators such as TPUs. Graph-
level optimization includes operator fusion and data layout
transformations. Operator fusion reduces the function call
overhead by combining eligible adjacent operations together,
generating a 1.2-2.0x speedup. Data layout transforms seek
to optimize the data locality for a particular hardware con-
figuration, such as calling a kernel with tiling correspond-
ing to a particular matrix size. The challenge in operation
fusion and data layout transforms lies in having access to
hardware-specific implementations for each transform, which
is infeasible due to a combinatorial explosion of possible
configurations. The authors address this through a Halide-
inspired schedule generation and search.

While TVM introduced strong statically compiled perfor-
mance boosts, its results still rely heavily on pre-defined
templates. Jia et al. proposed TASO - a more flexible graph
search algorithm [5]. End-to-end DNN structure optimization
methods such as Apollo and . With Ansor, Zheng et al. [2]
improved on TVM, TASO, and Halite by introducing a more
refined hierarchical search space, a learned cost function, and
a search efficiency optimizing task scheduler. The search space
hierarchy is composed of high-level sketches (e.g., operation
fusion options) and low-level annotations (e.g., tile sizes). The
algorithm samples random configurations, and performs the
evolutionary search. The authors note that using a learned
model for evaluations significantly improves performance.
They further improve the search efficiency by allocating more
resources to configurations that are estimated to have the best
performance by a task scheduler.

III. MOTIVATION

AI models are extremely complex, and running them takes
significant processing. Optimizing inference is critical for
deployment, and improvements at any level can save everyone
time and money. To this end, we wanted to research opti-
mizations for running models on the GPU. While looking into
optimizations, we noticed the capabilities of Transfer Tuning
[6] and Droplet Search [7], [8]. Both tasks help optimize
the use of the GPU on the system, so it appeared to be an
applicable research topic.

IV. RELATED WORKS

Further optimizing the task scheduler for deep learning tasks
is a very active field of study. Transfer Tuning and Droplet
Search have both been successful in their own ways. This
work takes the additional step of combining these two works
on top of TVM to create a solution that improves beyond using
either one alone.

A. Transfer Tuning

When multiple models need to be tuned and the models
have some similarities between them, Transfer Tuning can be
used. The technique assumes that there are task scheduling
optimizations that can be shared across the models, and that,
due to searching via Ansor, some optimizations may have
found on some models but not others. The technique identifies
these auto-schedulers, and attempts to apply them to the other
models. The authors proved that the technique can drastically
optimize the models, requiring Ansor to run for 10x as long
to match it’s performance at scale.

This solution provides better results when more models
optimized via Ansor, as this means that there are more
potential optimizations that can be transferred to each other.
This means that if applying the optimizations from one model
is unfruitful, another model may be a better fit.

B. Droplet Search

Droplet Search also selects the best candidate after tuning
with Ansor as a starting point for it’s optimization. Droplet
Search works similar to gradient decent, where the search
space is a multi-dimensional space with each potential variable
for optimization as it’s own dimension. The data from the
optimal Ansor candidate is set as the starting point of this
space, and the search attempts to optimize in a process itera-
tively moving through the search space, with each step only
moving in one dimension at a time. The authors prove that this
method works great for hardware optimizations. Additionally,
the algorithm can always find the most optimal state, as they
also prove that all minimas are equivalent in their space,
removing the issue of local minimas.

The search is a greedy heuristic, optimizing the best variable
at the current step. It looks at all of the closest options,
searching within the neighborhood, to find the best option. The
search is repeated until no variable provides a solution that
produces an improved optimization. The algorithm supports
parallel execution, making it efficient for hardware optimiza-
tion tasks.

V. DESIGN

To implement our test, we decided to start development
based on Transfer Tuning’s work. The Transfer Tuning paper
provides a repository with clear and in-depth usage of TVM,
making it a great starting point, as we could use the code
directly for our purposes and allowed us to better understand
the necessary concepts like TVM. From there, on TVM’s
Github page found pull request number 16499, which re-
added Droplet Search into TVM for Ansor. The requests



seemed to have been accepted by the authors of TVM but
was not merged. We decided that fetching this branch and
implementing the function would provide the best solution as
it has been approved by the authors.

Other changes such as editing the tests to interact with the
GPU were done. This involved adding a new device in the
device info . json folder that targets CUDA. To interact with
the host device’s GPU, during testing there was an additional
requirment for the host OS to be Ubuntu, the CUDA Toolkit
and nvidia-docker2 packages are to be installed as well. We
updated how the Dockerfile .main gpu file is ran to use the
newer configuration options to allow for GPU pass-though on
modern Docker installations.

Once the configurations were completed, the environment
was ready to start implementing the code. We follow the first
few steps of downloading the models and running Ansor as
prescribed in Transfer Tuning’s README. In each step, the
device name is set to use our CUDA device. Once that is
complete, the model and data directories are copied so that one
directory can run Droplet Search before both sets run Transfer
Tuning and are evaluated. Droplet Search is implemented as
a function that takes in the TVM log file of the model, and
from this information appends the solution it found to the end
of the file. The method implements Droplet Search as defined
in the paper under using TVM v0.16.

After Droplet Search has been applied to the copy of the
logs, both tests run the rest of the instructions. The only
exception that is made is in the last two commands. These
are not run, as Transfer Tuning ends with further tuning
the original models with Ansor, for a comparison of how
long Ansor would take to match the performance of Transfer
Tuning. As that is not the point of this work, it was not
done. Instead, the results can easily be seen by looking under
data / results / tt multi models for the Transfer Tuning with
and without Droplet Search for each model combination.

VI. EVALUATION

To evaluate this system, we needed to compare models
that have pre-existing similarities for Transfer Tuning. These
models should be similar architecturally in some way. The
authors of Transfer Tuning have in the tests on their public
code that AlexNet [9], GoogleNet [10], and ResNet50 [11]
are used with each other, so we decided to test the same
combinations. With these models, we ran Ansor, copied the
data and run Droplet Search, and ran Transfer Tuning on both
as described in the Design for 5000 trials per model.

From this, we saw near identical results when looking at
how AlexNet and ResNet50 preformed after Transfer Tuning
when comparing the set with and without Droplet Search. As
shown in Figure 1, in GoogleNet, we found inference running
about 10% faster when using Transfer Tuning with Droplet
Search versus using Transfer Tuning alone. In the chart, the
dark color represents the speed at which the model, after
transfer tuning against the labeled model, was able to run the
benchmark, while the brighter color shows the benchmark time
when Droplet Search was additionally applied to the same

model combination. Applying ResNet50 to the GoogleNet
model produced near-identical results, so Droplet Search did
not have much of an effect with this combination, while it
appears to have had an effect when applying Transfer Tuning
via AlexNet on GoogleNet.

VII. CASE STUDIES

While building the tests, there were different solutions we
needed to study to create our final result.

For our tests, we initially were also going to compare VGG-
16 [12]. While the authors seemed to not have much problem
using it, even when we ran Transfer Tuning with nothing
changed, TVM consistently threw errors when it reached
VGG-16. As a result, we needed to remove this from our final
test array.

Droplet Search was incomparable with Ansor with the
version of TVM that Transfer Tuning was using. TVM
holds an internal state of what it has done, and uses it
when interacting with logs, so generating the Ansor logs and
then upgrading to TVM v0.16 to apply Droplet and going
back down to TVM v0.8 for Transfer Tuning appears to
be infeasible. To fix this, the TVM version needed to be
upgraded from v0.8 to v0.16 inside the Docker container. This
surprisingly did not cause much of a problem, as the only
edits needed to upgrade were upgrading CMake and changing
all references of tvm. relay .backend.compile engine import to
tvm. relay .backend. te compiler.

While Transfer Tuning works on any device, some im-
plementations for GPU support were not made public. This
required reverse engineering the design to understand the
requirements for implementing on the GPU as described in
the Design section. Once GPU support was enabled, we saw
small increase in GPU utilization when the tests were being
preformed, followed by periods of minimal utilization where
it appeared that Ansor was calculating the results.

Further testing needs to be done. The testing was only done
on three models, and Ansor was only run for 5000 trials.
This is not optimal for Transfer Tuning, where 20,000 trials

Fig. 1. Visualization of inference benchmark times on GoogleNet between
using Transfer Tuning with and without Droplet Search.



are required, and better performance is possible with more
devices. Testing on more devices and with different step counts
on Ansor to verify the results is the next logical step for
developing this work. In addition, more configurations, like
trying to run Ansor in shorter bursts, like in 500-step intervals,
and running Transfer Tuning and Droplet Search after each
interval, may lead to promising results.

VIII. CONCLUSION

The rate at which AI models are being developed and
utilized cannot be understated. With any large enough amount
of use, even small optimizations can lead to huge boosts in
productivity. Both Transfer Tuning and Droplet Search already
provide additional optimizations on top of Ansor, but their
combination further boosts the performance. In this paper, we
show that these two algorithms can increase the speed of some
models by up to 10%, providing a clear path forward for future
optimizations.

REFERENCES

[1] S. Chetlur, C. Woolley, P. Vandermersch, et al., cuDNN:
Efficient primitives for deep learning, Dec. 18, 2014.
DOI: 10 . 48550 / arXiv. 1410 . 0759. arXiv: 1410 . 0759.
[Online]. Available: http : / / arxiv. org / abs / 1410 . 0759
(visited on 12/15/2024).

[2] L. Zheng, C. Jia, M. Sun, et al., Ansor: Generating
high-performance tensor programs for deep learning,
Oct. 15, 2023. DOI: 10.48550/arXiv.2006.06762. arXiv:
2006.06762. [Online]. Available: http://arxiv.org/abs/
2006.06762 (visited on 12/04/2024).

[3] T. Chen, T. Moreau, Z. Jiang, et al., TVM: An auto-
mated end-to-end optimizing compiler for deep learn-
ing, Oct. 5, 2018. DOI: 10.48550/arXiv.1802.04799.
arXiv: 1802 .04799. [Online]. Available: http : / / arxiv.
org/abs/1802.04799 (visited on 12/16/2024).

[4] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F.
Durand, and S. P. Amarasinghe, “Halide: A language
and compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines,” Proceed-
ings of the 34th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, 2013.
[Online]. Available: https : / / api . semanticscholar . org /
CorpusID:5885207.

[5] Z. Jia, O. Padon, J. Thomas, T. Warszawski, M. Zaharia,
and A. Aiken, “Taso: Optimizing deep learning compu-
tation with automatic generation of graph substitutions,”
en, in Proceedings of the 27th ACM Symposium on Op-
erating Systems Principles, Huntsville Ontario Canada:
ACM, Oct. 2019, pp. 47–62, ISBN: 978-1-4503-6873-
5. DOI: 10.1145/3341301.3359630. [Online]. Available:
https://dl.acm.org/doi/10.1145/3341301.3359630.

[6] P. Gibson and J. Cano, Transfer-tuning: Reusing auto-
schedules for efficient tensor program code generation,
Sep. 7, 2022. DOI: 10.48550/arXiv.2201.05587. arXiv:
2201.05587. [Online]. Available: http://arxiv.org/abs/
2201.05587 (visited on 12/04/2024).

[7] M. Canesche, V. Rosário, E. Borin, and F. Quintão
Pereira, “The droplet search algorithm for kernel
scheduling,” ACM Trans. Archit. Code Optim., vol. 21,
no. 2, 35:1–35:28, May 21, 2024, ISSN: 1544-3566.
DOI: 10.1145/3650109. [Online]. Available: https://dl.
acm.org/doi/10.1145/3650109 (visited on 12/04/2024).

[8] M. Canesche, G. Verma, and F. M. Q. Pereira, Explore
as a storm, exploit as a raindrop: On the benefit of
fine-tuning kernel schedulers with coordinate descent,
Jul. 15, 2024. DOI: 10.48550/arXiv.2406.20037. arXiv:
2406.20037. [Online]. Available: http://arxiv.org/abs/
2406.20037 (visited on 12/15/2024).

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Ima-
geNet classification with deep convolutional neural net-
works,” in Advances in Neural Information Processing
Systems, vol. 25, Curran Associates, Inc., 2012. [On-
line]. Available: https://papers.nips.cc/paper files/paper/
2012 / hash / c399862d3b9d6b76c8436e924a68c45b -
Abstract.html (visited on 12/15/2024).

[10] C. Szegedy, W. Liu, Y. Jia, et al., “Going deeper with
convolutions,” in 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), ISSN: 1063-
6919, Jun. 2015, pp. 1–9. DOI: 10.1109/CVPR.2015.
7298594. [Online]. Available: https : / / ieeexplore . ieee .
org/document/7298594 (visited on 12/15/2024).

[11] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual
learning for image recognition, Dec. 10, 2015. DOI: 10.
48550/arXiv.1512.03385. arXiv: 1512.03385. [Online].
Available: http://arxiv.org/abs/1512.03385 (visited on
12/15/2024).

[12] K. Simonyan and A. Zisserman, Very deep convo-
lutional networks for large-scale image recognition,
Apr. 10, 2015. DOI: 10.48550/arXiv.1409.1556. arXiv:
1409.1556. [Online]. Available: http : / /arxiv.org /abs /
1409.1556 (visited on 12/15/2024).


